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STABILITY OF MOTIONS OF THERMOELASTI C FLUID S

C. M . Daf ermo s

ABSTRACT: It is shown that the second law of thermodynamics in-

duces uniqueness and continuous dependence upon initial state and

supply terms of smooth thermodynamic processes of thermoelastic

fluids within the broader class of thermodynamic processes with

shock waves.

~

c.d~~~
a j ;

HI 
k
ii ~



r

1. Introduction

The intent of this article is to contribute to the project of

elucidating the relationship between the second law of thermodynamics

and stability. The early work of Duhem [1] and its subsequent

developments by Ericksen [2 ,3], Coleman and Dill [4] and Gurtin [5]

indicate that the second law (the Clausius-Duhem inequality) induces

Liapunov stability of the equilibrium process in thermomechanics .

In a different direction , the author [6] shows that the second law

renders uniqueness of thermoelastic processes as well as continuous

dependence upon the initial state and the supply terms .

Here we continue the investigation in [6] by examining the

implications of the second law on the stability of adiabatic processes

of thermoelastic fluids. This problem is of some interest for the

following reason : The nonlinearity and hyperbolicity of the field

equations , expressing the balance laws of mass , momentum and energy

in the theory of thermoelastic fluids , causes the breakdown of

smooth solutions and the development of shock waves. Thus, the

class of smooth functions is far too narrow to encompass all

processes of physical interest. Careful mathematical investigation

[7] reveals that processes should be defined in the set of func-

tions of bounded variation , in the sense of Tonelli and Cesari ,

that is the class of velocity, density and entropy fields whose

gradients are Borel measures. The reader who does not care to get

involved with technicalities , may , without much loss , visualize

these processes as smooth except on a family of propagating surfaces

(shocks) across which the velocity, density and entropy fields

experience jump discontinuities.
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Within the class of processes of bounded variation , the initial

value problem admits , in general , many solutions , i.e., there may

be many processes that originate from the same state and satisfy

the balance laws of mass , momentum and energy for the same body

force and heat source. Interpreted as an admissibility criterion ,

the second law of thermodynamics , in the form of the Clausius-Duhem

inequality , rules out some but not necessarily all extraneous

processes . Consequently, in order to single out the physically

relevant process one has to employ stronger admissibility criteria

[81 . In this paper , however , we show that , somewhat surprisingly,

whenever a smooth process exists then it is unique and stable within

the broader class of processes of bounded variation that satisfy the

Clausius-Duhem inequality. In other words , for as long as one is

dealing with smooth processes, the second law of thermodynamics in

its traditional form is sufficiently powerful to rule out all

extraneous processes.

The proof of the aforementioned result is based on an energy

inequality , derived in Section 3, in the spirit of the “entropy”

estimate established by DiPerna in his interesting paper (9] on

uniqueness of solutions of quasilinear hyperbolic systems .
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2. Thermoelastic Fluids

We begin with a review of the classical theory of thermo-

elastic fluids. We will be concerned here exclusively with

adiabatic processes so that the state variables are velocity v,

specific volume t (the inverse of density p , i.e., T = l/p), and

entropy r~. In terms of these , internal energy C , pressure p,

and temperature 0 are determined via constitutive equations:

= ~~~~~~~~~~~~~~ 

~ 
= p*(t ,n), 0 = 0*(~r ,fl) (2.1)

p*(~~~) = - 
ac *~t ,n) 

~~* (.~~~1) = 
3c*(t ,n) (2 .2 )

An admissible thermodynamic process is determined by velocity ,

specific volume and entropy fields (v(x,t), t(x,t), n(x,t)) that

satisfy the balance laws of mass , momentum and energy as well as the

second law of thermodynamics , viz.,

2

6 ( Py )
+ vp = pf (2.4)

+ p€ ] + V•(pv) = pf.y + Pr (2.5)

____ - P~~~> O  (2.6)
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where f is the body force , r is the heat source and we are using

the notation

= + V~~~v). (2.7)

As explained in the introduction , the fields (v(x,t),

T(x,t),r~(x ,t)) will in general be functions of bounded variation ,

having shock discontinuities , and , consequently, formulas (2.3)-(2.6)

will only be satisfied in a generalized sense (in the sense of

measures or distributions). In particular , the classical produc t

differentiation formula does not generally hold for functions in this

class so that (2.3)-(2.5) cannot be simplified in the standard

fashion. However, in the special case of a Lipschitz continuous

thermodynamic process (~ (x ,t),~i(x ,t),~ (x ,t)) one has the reduced

form of the balance laws :

+ = ~~~~ (2.8)

(2.9)

+ V .v~ + ~~ 
v .~ 

= i. (2.10)

Since ~ = l/~ , one obtains from (2.8)

+ ~~~~~~~~ = Tv.!. (2.11)

Fur thermore , using (2.2) one easily derives from (2.10)



— - t~~~~~~~~j  ~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~

I
+ = 

~
. (2 .12)

which shows that the Clausius-Duhem inequality (2.6) holds as an

equality within this class of processes. We should remark here

that Lipschitz continuous processes may have weak (i.e., acceleration)

waves but not shock waves.

L I
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3. Stability of Smooth Solutions

We assume that (~ (x ,t),T(x,t),~~(x ,t)) is a Lipschitz con-

tinuous process , with body force f(x,t) and heat source

and let (v(x ,t),t(x,t),n(x,t)) be any other admissible process

of bounded variation , with body force f(x,t) and heat source r(x,t).

We introduce the functions :

H = p [~~(v-~).(v-~) + C - + ~ (t ..T) - O ( r ~-~i)) , (3.1)

F = Hv + (p-~)(v-~). (3.2)

We will be using H as an estimate of the “distance” between the

two processes while F is the “f lux” of H. In order to determine

how H evolves in time , we have to estimate the expression

Ht + V F .  On account of (2.7),

Ht + V F  = .
~~~~~ + V~ [(p-~)(v-~ )]. (3.3)

Using the identity

_ _ _ _  = + x (~
)
~ 

+ v~V~), (3.4)

which holds in the sense of measures whenever x is any function

of bounded variation and * is Lipschitz continuous , one obtains

L
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1 6(Py) — —+ V F  = .~.— [.....pv.y + PC] - 

6t 
- 

~~~~~~ 
+ Vv .v] (3.5)

+ p
~~~
.[! + v!.v] - p [~i~ + v .V~ ] + + V.(pv)

- p
~~( + v.VT] - pT[~~ + v .V~ ] - 0 ~~~PT 1)

- pn(O + v.V~ ] + + y .VO] + Pot + v .Vn]

+ V (pv) - V . ( p ~ ) - V . (~ v) +

With the help of the balance laws (2.3)-(2.6) and (2.9) we get

+ V •F < -V~ (pv) + ~)f.V + ()T - ‘f~~[-VI’ 
+ Pf] (3.6)

- py. [-~tVp + •r] + 
~! [-

~~~~ 
+

- P(y - ~) V ~ •(v - + + V ( ~v) - PT(~~ 
+ v~V~]

- + v•V~ + ~~~ [T~~ + v.VT] - + v.V0]}

- Pr - P(T1 - +

+ V.(pv) - V• (p~) - V~(~v) +

We simplify the right -hand side of (3.6), noting , in particular ,

that, by virtue of (2.2),

— 
~~~~~~~~~~~~~~~~ -- — . --
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+ - = 0 (3.7)

+ - ~VO = 0, (3.8)

thus arriving at

(3 .9)

+ Pr - Pr + (1 - p~~ ) [~~~~ 
+ ~~~~ + (j

~ 
- p)V~~

- p (n - 
~~~~~~~~~ 

+ ~ .Ve ] - P(n - ~) (v  - V).VO

= P(f  - 
~~~~~~~~~ 

- 
~~

) - P(v - .V?.(v - ?)

+ Pr - Pr + p(t  - ~~2 [T + V .vT] + .~.2_ ~~ 
+ ~ .Vi~J )

+ (~~ 
- p) V~~ - P(n - ~~ ) {~~~~

— (~~ 
+ ~ .v ~tj  + 

~r 
+

- p ( n  - ii)(v - ~).V0 .

On account of (2.2),

— 
30 * 

— a Z C* (3.10)

so that , with the help of (2.11) and (2.12), we may rewrite (3.9)

in the form
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Fit + V < P(f - ~~
.(‘v - !) - P(y - ~).c’~ .(v - 

~~) 
(3. 11)

- ~p - ( n -  ~ ) 1V ~~

— p •~•fl_• (~~ 
- 

~
•) 2 v~~ 

p (1 - T)(n -

- p~~~I (0 - 0) 2 
+ ~~r ~ r (0 - 6 )  - p(n - ~i)(v -

Estimate (3.11) will be the tool for establishing stability.

The crucial observation is that , by virtue of ( 2 . 2 ) , H and F are

of quadratic order in the differences (V - ~7 , t - T, n - 
~~~) 

and

that the right-hand side of (3.11) is of quadratic order in

(y - - t , n - 
~ i, f - 

~~, r - i ) .  In addi t ion to tha t we have

to make certain that H is positive definite. To this end , we

impose on the constitutive equations the following restrictions:

(~~~~~) < 0, (-
~
-
~
) > 0. (3.12)

In (3.12) we are using the notation of classical thermodynamics ,

visualizing p as a function of (T ,n) and taking the partial

derivative with respect to t and then visualizing 0 as a

function of (p,n) and taking the partial derivative with respect

to n. Assumption (3.12) is physically reasonable , for as long as

the fluid does not undergo any phase transitions , and its connection

with Gjbb ’s stability has been established in classical thermo-

dynamics. In particular , (3.12) is satisfied by the constitutive

equations of polytropic gases.

_ _ _ _ _  —.——-—— ~-~~~-—- - - ._
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In order to see the implications of (3.12) on the function
note first that , by virtue of (2.2),

2 *(.
~~

) = - -
~~

--—
~~ . (3.13)n

Furthermore , by chain rule ,

(•
~~

) = (}~~
.) - (3.14)

= (.
~~-) - (!~) (.~.fl) 1

(.~.2~)

= (.~2) 
- 1 

~ (.~
.R) 

~~~~~~ 
- (.~!.) (.~2~) }n r~ ~ t 

~
2 *  2 *  2 *3~~ -l 3 C 3 C 3’E 2

= (
~3 T 2 ) 

~ ~~~~~ 
~ 

- 3

It is clear from (3.13) and (3.14) that (3.12) holds if and only
*if the function € (t ,n) is (locally) uniformly conv ex.

Let us now assume that the fluid is confined in a vessel with
rigid boundary that occupies a smooth bounded domain ~2 C R” (n 1 ,
2 or 3). This leads to F’oundary Conditions

= 0 (3.15)

where v is the Unit normal on the boundary of c2. Our stability
resul t is given in the following

Theorem. Let (~ (x ,t), T(x ,t), ~itx ,t)) be a bounded and uniformly
Lipschi tz Continuous process defined for x C 

~~~ t > 0 and
satisfying the balance laws (2.3)- (2.lo) and the boundary condition

_ _ _ _ _ _ _ _  
_ _ _ _  III~~ E~~~ 
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= 0. Consider any admissible process (v(x,t ) ,  t(x,t), n (x ,t))

of bounded variation defined for x C ~~~, t > 0 and sa t i s fy ing  the

balance laws (2.3)-(2.6), the boundary condition v~ v = 0 and the

bounds

IT (~ ,t)I, IP(~,t)l , ln(x ,t)I, ~0~~ (X,t)I < C, x £ 12, t > 0. (3 .16)

Then there are positive constants A and ~~, depending solely upon

bounds of (~ ,i ,rT) and its Lipschitz constant , the function £*(t , r~)

and the constant C in (3.16), such that , for any t > 0,

j{Iv (x,t) - 
~(x,t) 2 

+ It(x,t) - ~(x,t)~
2 

+ n(x,t) - ~ (x ,t)~
2}dx (3.17)

<Aeat
~~ {Iv(x,0) - ~(x,0)I

2 
+ Jt (x O) - T(x O)1

2 
+ n(x,0) - ~(x ,0) I 2 }dx

+ f~ 1 - ?(xs)1
2 

+ I r ( ~ ,s) - ~(x,s)I
2}dx~~~.

Proof. Since the right-hand side of (3.11) is of quadratic order

in (y - t - T, ~ 
- 

~~~~~ f - T, r - i), we have

Ht + V•F < b{ Iv - ~I
2 

+ - ~~2 + - ~~2 + - !12 
+ ~r - (3.18)

with b depending solely upon bounds of (~ ,F,i~) and its Lipschitz

constant, the function C*(t ,fl) and C in (3.16). Integrating

(3.18) over 12 X [0,t], applying Green ’s theorem and noting that by

(3.2) . and the boundary conditions we have ~~ = 0, we obtain

~~~~~~~~ — - - - — --
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- J R ,0)dx (3.19)

2 2< b j J  { I
~~ 

- + - + I n -

0 1 2

+ 
i~~~ 

- !l~ + Ir - 
~i

2}dxds .

Now H is of quadratic order in (v - ~~~~, 
I - T, n -

so that

J
H(x,0)dx < M J {iv(x ,O) - 

~(x,0)I
2 (3.20)

+ I( ~~ 0) - T(x O)1 2 
+ In (x,0) - 

~ (x,0)I
2}dx .

*On the other hand , since ~ (I,r ’
~ is uniformly convex , H is

positive definite and so

mf (!v(x ,t) - 

~(x,t)I
2 

(3.21)

+ lt (x ,t) - T(x,tfl
2 

+ n (x,t) - 
~ (x ,t )I 2}dx .

The positive constants M and m in (3.20) and (3.21) depend on the

same factors as b in (3.17). We now combine (3.19), (3.20), (3.21)

and we apply Gronwall’s inequality (e.g. [10, 1.6.6]) thus arriving

at (3.17) with U = b/rn and A = maxfM/m ,b/m}. This completes the

proof.

The preceeding proposition yields immediately the following

result on uniqueness:

--- -~- .— —- .— 
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Corollary . Let (~ (x ,t), ~ix ,t), ~(x,t)) be a uniformly Lipschitz

continuous process defined for x ~ ~~~, t > 0 and sa tis fying the

balance laws ~ .8)-(2.l0) and the boundary condition ~ .v = 0 .  Then

there is no other admissible process (even in the broader class of

functions of bounded variation) that satisfies the same initial and

boundary condi tions and has the same body force and hea t sourc e as

the process ( V( ~~ , t ) ,  x,t), ~(x,t)).

One may also establish uniqueness and stability results for the

case where the fluid occupies the entire space by applying the

techniques developed in [61



_ _  - - 

~

—---

~~~~ 
4

REFERENCES

[1] P. Duhem , Traits d’Energetigue ou Thermodynamigue Gón~ rale,
Vol.  2 , Paris  (1911).

[2) J. L. Ericksen , A thermo-kinetic view of elastic stability
theory, m t .  J. Solids Structures 2 , 573-580(1966).

[3] J. L. Ericksen , Thermo elas tic stabi l i ty ,  Proc. 5th U.S. National
Cong. Appi. Mech., 187-193(1966).

[4] B. D. Coleman and E. I I .  P il l , On thermodynamics and the stability
of motions of materials with memory , Arch. Rational Mech.
Analysis 51 , 1-13(1973) .

[5] M. E. Gurtin , Thermodynamics and stability, Arch. Rational
Mech. Analysis , 59, 63-96 (1975).

[6] C. M. Dafermos , The second law of thermodynamics and stability
( to appear) .

[7] A. I. Volpert , The space BV and quasilinear  equa tions , Ma t .
Sbornik (N.S.) 73(115), 255-302(1967) . English translafl~ n:
Math. USSR-Sbornik 2, 225-267(1967) .

[8] C. M. Dafermos , The en tropy ra te admis sib i l i ty cr it erion in
thermoe l ast ici ty,  Rend. Accad. Naz. Lincei , Ser. VI II , 57 ,
113-119(1974). —

[9] R. J. DiPerna , Uniqueness of solutions to hyperbolic conservation
laws ( to appear) .

(10] J. K. Hale , Ordinary Differential Equations, Wiley, New York
(1968). -__________________

__   
H 

- - - - - -~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - - ~~~~~~


